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The Dispa-SET model

The Dispa-SET model is an open-source unit commitment and optimal dispatch model focused on the balancing and flexibility problems in European grids. Its pre and post-processing tools are written in Python and the main solver can be called via GAMS or via PYOMO. The selected Mixed-Integer Linear Programming (MILP) solver is CPLEX.

Dispa-SET is mainly developed within the Joint Research Centre of the EU Commission, in close collaboration with the University of Liège (Belgium).


Model description and philosophy

A comprehensive description of the model is available in the 2017 JRC technical report: Modelling Future EU Power Systems Under High Shares of Renewables [https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/modelling-future-eu-power-systems-under-high-shares-renewables-dispa-set-21-open-source].

[image: _images/report2.jpg]



Downloading Dispa-SET

The public version of Dispa-SET can be downloaded in the Releases section or from its github repository (using the Clone or Download button on the right side of the screen):
https://github.com/energy-modelling-toolkit/Dispa-SET




Documentation

The model documentation is available by running sphinx in the Docs folder of the project or by consulting the online documentation. This documentation corresponds to the latest available public version of Dispa-SET:
http://www.dispaset.eu/latest/index.html

Main contributors:


	Sylvain Quoilin (University of Liège, Belgium))

	Konstantinos Kavvadias  (Joint Research Centre, EU Commission)

	Andreas Zucker (Joint Research Centre, EU Commission)






Contents



	Overview

	Getting Started

	Model Description

	Implementation and interface

	Input Data

	Developers’ section

	DispaSET package

	Releases








Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    


    
         Copyright 2017, Sylvain Quoilin & Kostas Kavvadias.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	DispaSET 2.2 documentation 
 
      

    


    
      
          
            
  
Overview





	Organization:	Joint Research Centre [https://ec.europa.eu/jrc/en],
European Commission [https://ec.europa.eu/],


	Version:	2.2


	Date:	August 31, 2018





The Dispa-SET model is mainly developed within the “Joint Research Centre” of the European Commission and focused on the balancing and flexibility problems in European grids [1].

It is written in GAMS an Python (Pyomo) and uses csv files for input data handling. The optimisation is defined as a Linear Programming (LP) or Mixed-Integer Linear Programming (MILP) problem, depending on the desired level of accuracy and complexity. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:


Features


	Minimum and maximum power for each unit

	Power plant ramping limits

	Reserves up and down

	Minimum up/down times

	Load Shedding

	Curtailment

	Pumped-hydro storage

	Non-dispatchable units (e.g. wind turbines, run-of-river, etc.)

	Start-up, ramping and no-load costs

	Multi-nodes with capacity constraints on the lines (congestion)

	Constraints on the targets for renewables and/or CO2 emissions

	Yearly schedules for the outages (forced and planned) of each units

	CHP power plants and thermal storage



The demand is assumed to be inelastic to the price signal. The MILP objective function is therefore the total generation cost over the optimization period.




Libraries used


	pyomo [http://www.pyomo.org/] Optimization object library, interface to LP solver (e.g. CPLEX)

	pandas [http://pandas.pydata.org] for input and result data handling

	matplotlib [http://matplotlib.org] for plotting

	GAMS_api [http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fapis%2Findex.html] for the communication with GAMS






Ongoing developments

The Dispa-SET project is relatively recent, and a number of improvements will be brought to the project in a close future:


	Grid constraints (DC power-flow)

	Stochastic scenarios

	Extension of the modeled areas

	Modeling of the ancillary markets

	User interface






Public administration reference

This software is primarily developed and used within the Institute for Energy and Transport, which is one of the 7 scientific institutes of the Joint Research Centre (JRC) of the European Commission. The IET is based both in Petten, the Netherlands, and Ispra, Italy. The Dispa-SET model is developed in the framework of the “Energy Systems Modelling” (ESM) project.




Licence

Dispa-SET is a free software licensed under the “European Union Public Licence” EUPL v1.1. It
can be redistributed and/or modified under the terms of this license.




Main Developers


	Sylvain Quoilin (University of Liège)

	Andreas Zucker (European Commission, Institute for Energy and Transport)

	Konstantinos Kavvadias (European Commission, Institute for Energy and Transport)
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Getting Started

This short tutorial describes the main steps to get a practical example of Dispa-SET running.


Prerequisites

Install Python 2.7, with full scientific stack. The Anaconda [https://www.continuum.io/downloads] distribution is recommended since it comprises all the required packages. If Anaconda is not used, the following libraries and their dependencies should be installed manually:


	numpy

	pandas (> v0.18.1)

	matplotlib

	xlrd

	pickle



This can be achieved using the pip installer (example for numpy):

pip install numpy





NB: For Windows users, some packages might require the installation of a C++ compiler for Python. This corresponds to the typical error message: “Unable to find vcvarsall.bat”. This can be solved by installing the freely available “Microsoft Visual C++ Compiler for Python 2.7 ”.  In some cases the path to the compiler must be added to the PATH windows environment variable (e.g. C:Program FilesCommon FilesMicrosoftVisual C++ for Python9.0)


Using Dispa-SET with GAMS:

Dispa-SET is primarily designed to run with GAMS and therefore requires GAMS to be installed with a valid user licence. Currently, only the 64-bit version of GAMS is supported in Dispa-SET!

The GAMS api for python has been pre-compiled in the “Externals” folder and is usable with most operating systems. If the pre-compiled binaries are not available or could not be loaded, the system exits with an error message. In that case, the gams python api should be compiled from the source provided in the GAMS installation folder (e.g. “C:\GAMS\win64\24.3\apifiles\Python\api”):

python gdxsetup.py install
python gamssetup.py install





The api requires the path to the gams installation folder. The “get_gams_path()” function of dispa-set performs a system search to automatically detect this path. It case it is not successful, the user is prompted for the proper installation path.




Using Dispa-SET with PYOMO:


	Install pyomo

pip install pyomo







	Install a solver and add it to the PATH environment variable (e.g. if cplex is installed, the “cplex” command should be callable from any command prompt).










Step-by-step example of a Dispa-SET run

This section describes the pre-processing and the solving phases of a Dispa-SET run. Three equivalent methods are described in the next sections:


	Using the command line interface

	Using the Dispa-SET API

	Using GAMS




1. Using the command line interface

Dispa-SET can be run from the command line. To that aim, open a terminal window and change de directory to the Dispa-SET root folder.

[image: _images/cli.png]

1.1. Check the configuration file

Dispa-SET runs are defined in dedicated excel configuration files stored in the “ConfigFiles” folder. The configuration file “ConfigTest.xlsx” is provided for testing purposes. It generates a 10-days optimisation using data relative a fictitious power system composed of two zones Z1 and Z2.




1.2. Pre-processing

From the command line, specify the configuration file to be used as an argument, the solver (Pyomo or GAMS) and the actions to be performed. Within the “Dispa-SET” folder, run:

python dispacli.py -c ./ConfigFiles/ConfigTest.xlsx build





NB: The command line interface dispacli.py is designed to run with the Python interpreter, which should be the one selected. It might present some problems when run in Ipython.




1.3. Check the simulation environment

The simulation environment folder is defined in the configuration file. In the test example it is set to “Simulations/simulation_test”. The simulation inputs are written in three different formats: excel (34 excel files), Python (Inputs.p) and GAMS (Inputs.gdx).




1.4. Run the optimisation

Using the GAMS api, the simulation can be started directly from the main DispaSet python file after the pre-processing phase. From the “Dispa-SET” folder, run:

python dispacli.py -g -c ./ConfigFiles/ConfigTest.xlsx simulate





This generates the simulation environment, runs the optimisation, and stores the results in the same folder. Note that this can only work is the simulation has been pre-processed before (step 1.2). It is possible to combine the pre-processing and simulation step in one command:

python dispacli.py -g -c ./ConfigFiles/ConfigTest.xlsx build simulate





The same action can be performed using the PYOMO solver. In that case, the “-g” argument must be changed into “-p”:

python dispacli.py -p -c ./ConfigFiles/ConfigTest.xlsx build simulate










2. Using the Dispa-SET API.

The steps to run a model can be also performed directly in python, by importing the Dispa-SET library. An example file (“build_and_run.py”) is available in the “scripts/” folder.
After checking the configuration file “ConfigTest.xlsx” (in the “ConfigFiles” folder). Run the following python commands:

2.1 Import Dispa-SET:

import DispaSET as ds





2.2 Load the configuration file:

config = ds.load_config_excel('ConfigFiles/ConfigTest.xlsx')





2.3 Build the simulation environment (Folder that contains the input data and the simulation files required for the solver):

SimData = ds.build_simulation(config)





2.4a Solve using PYOMO:

r = ds.solve_pyomo(config['SimulationDirectory'])





2.4b Solve using GAMS:

r = ds.solve_GAMS(config['SimulationDirectory'], config['GAMS_folder'])





A more detailed description of the Dispa-SET functions in available in the API section.




3. Using GAMS

It is sometimes useful to run the dispa-SET directly in GAMS (e.g. for debugging purposes). In that case, the pre-processing must be run first (steps 1.2 or 2.1, 2.2 and 2.3) and the gams file generated in the simulation folder can be used to run the optimization.


Using the GAMS graphical user interface:

From the simulation folder (defined in the config file), the Dispa-SET model can be run following the instruction below:


	Open the UCM.gpr project file in GAMS

	From GAMS, open the UCM_h.gmx model file

	Run the model in GAMS.



The result file is written in the gdx format and stored in the Simulation folder, together with all input files.




Using the GAMS command line:

GAMS can also be run from the command line (this is the only option for the Linux version).


	Make sure that the gams binary is in the system PATH



	From the simulation environment folder, run:

gams UCM_h.gms
















Postprocessing

Various functions and tools are provided within the PostProcessing.py file to load, analyse and plot the siimulation results. The use of these functions is illustrated into the the “Read_results_notebook.ipynb”  Notebook or in the “read_results.py” script, which can be run by changing the path to the simulation folder. The type of results provided by the post-processing is illustrated hereunder.

The power dispatch can be plotted for each simulated zone. In this plot, the units are aggregated by fuel type. The power consumed by storage units and the exportations are indicated as negative values.

[image: _images/results_dispatch.png]
It is also interesting to display the results at the unit level to gain deeper insights regarding the dispatch. In that case, a plot is generated, showing the commitment status of all units in a zone at each timestep. Both the dispatch plot and the commitment plot can be called using the CountryPlots function.

[image: _images/results_rug.png]
Some aggregated statistics on the simulations results can also be obtained, including the number of hours of congestion in each interconnection line, the yearly energy balances for each zone, the amount of lost load, etc.

[image: _images/result_analysis.png]
The yearly energy balance per fuel or per technology is also useful to compare the energy mix in each zone. This can be plotted using the EnergyBarPlot function, with the following results:

[image: _images/results_balance.png]
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Model Description

The model is expressed as a MILP or LP problem. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:


Variables


Sets







	Name
	Description




	f
	Fuel types


	h
	Hours


	i
	Time step in the current optimization horizon


	l
	Transmission lines between nodes


	mk
	{DA: Day-Ahead, 2U: Reserve up, 2D: Reserve Down}


	n
	Zones within each country (currently one zone, or node, per country)


	p
	Pollutants


	t
	Power generation technologies


	tr
	Renewable power generation technologies


	u
	Units


	s
	Storage units (including hydro reservoirs)


	chp(u)
	CHP units








Parameters








	Name
	Units
	Description




	AvailabilityFactor(u,i)
	%
	Percentage of nominal capacity available


	CHPPowerLossFactor(u)
	%
	Power loss when generating heat


	CHPPowerToHeat(u)
	%
	Nominal power-to-heat factor


	CHPMaxHeat(chp)
	MW
	Maximum heat capacity of chp plant


	CHPType
	n.a.
	CHP Type


	CommittedInitial(u)
	n.a.
	Initial commitment status


	CostFixed(u)
	EUR/h
	Fixed costs


	CostLoadShedding(n,h)
	EUR/MWh
	Shedding costs


	CostRampDown(u)
	EUR/MW
	Ramp-down costs


	CostRampUp(u)
	EUR/MW
	Ramp-up costs


	CostShutDown(u)
	EUR/h
	Shut-down costs


	CostStartUp(u)
	EUR/h
	Start-up costs


	CostVariableH(u,i)
	EUR/MWh
	Variable costs


	Curtailment(n)
	n.a.
	Curtailment {binary: 1 allowed}


	Demand(mk,n,i)
	MW
	Hourly demand in each zone


	Efficiency(u)
	%
	Power plant efficiency


	EmissionMaximum(n,p)
	EUR/tP
	Emission limit per zone for pollutant p


	EmissionRate(u,p)
	tP/MW
	Emission rate of pollutant p from unit u


	FlexibilityDown(u)
	MW/h
	Available fast shut-down ramping capacity


	FlexibilityUp(u)
	MW/h
	Available fast start-up ramping capacity


	Fuel(u,f)
	n.a.
	Fuel type used by unit u {binary: 1 u uses f}


	LineNode(l,n)
	n.a.
	Line-zone incidence matrix {-1,+1}


	LoadMaximum(u,h)
	%
	Maximum load for each unit


	LoadShedding(n,h)
	MW
	Load that may be shed per zone in 1 hour


	Location(u,n)
	n.a.
	Location {binary: 1 u located in n}


	OutageFactor(u,h)
	%
	Outage factor (100 % = full outage) per hour


	PartLoadMin(u)
	%
	Percentage of minimum nominal capacity


	PowerCapacity(u)
	MW
	Installed capacity


	PowerInitial(u)
	MW
	Power output before initial period


	PowerMinStable(u)
	MW
	Minimum power for stable generation


	PowerMustRun(u)
	MW
	Minimum power output


	PriceTransmission(l,h)
	EUR/MWh
	Price of transmission between zones


	RampDownMaximum(u)
	MW/h
	Ramp down limit


	RampShutDownMaximum(u)
	MW/h
	Shut-down ramp limit


	RampStartUpMaximum(u)
	MW/h
	Start-up ramp limit


	RampUpMaximum(u)
	MW/h
	Ramp up limit


	Reserve(t)
	n.a.
	Reserve provider {binary}


	StorageCapacity(s)
	MWh
	Storage capacity (reservoirs)


	StorageChargingCapacity(s)
	MW
	Maximum charging capacity


	StorageChargingEfficiency(s)
	%
	Charging efficiency


	StorageDischargeEfficiency(s)
	%
	Discharge efficiency


	StorageInflow(s,h)
	MWh
	Storage inflows


	StorageInitial(s)
	MWh
	Storage level before initial period


	StorageMinimum(s)
	MWh
	Minimum storage level


	StorageOutflow(s,h)
	MWh
	Storage outflows (spills)


	StorageProfile(u,h)
	MWh
	Storage long-term level profile


	Technology(u,t)
	n.a.
	Technology type {binary: 1: u belongs to t}


	TimeDownInitial(u)
	h
	Hours down before initial period


	TimeDownLeftInitial(u)
	h
	Time down remaining at initial time


	TimeDownLeftJustStopped(u,i)
	h
	Time down remaining if started at time i


	TimeDownMinimum(u)
	h
	Minimum down time


	TimeDown(u,h)
	h
	Number of hours down


	TimeUpInitial(u)
	h
	Number of hours up before initial period


	TimeUpLeftInitial(u)
	h
	Time up remaining at initial time


	TimeUpLeftJustStarted(u,i)
	h
	Time up remaining if started at time i


	TimeUpMinimum(u)
	h
	Minimum up time


	TimeUp(u,h)
	h
	Number of hours up


	VOLL ()
	EUR/MWh
	Value of lost load








Optimization Variables








	Name
	Units
	Description




	Committed(u,h)
	n.a.
	Unit committed at hour h {1,0}


	CostStartUpH(u,h)
	EUR
	Cost of starting up


	CostShutDownH(u,h)
	EUR
	Cost of shutting down


	CostRampUpH(u,h)
	EUR
	Ramping cost


	CostRampDownH(u,h)
	EUR
	Ramping cost


	CurtailedPower(n,h)
	MW
	Curtailed power at node n


	Flow(l,h)
	MW
	Flow through lines


	Heat(chp,h)
	MW
	Heat output by chp plant


	HeatSlack(chp,h)
	MW
	Heat satisfied by other sources


	MaxRamp2U(u,h)
	MW/h
	Maximum 15-min Ramp-up capbility


	MaxRamp2D(u,h)
	MW/h
	Maximum 15-min Ramp-down capbility


	Power(u,h)
	MW
	Power output


	PowerMaximum(u,h)
	MW
	Power output


	PowerMinimum(u,h)
	MW
	Power output


	ShedLoad(n,h)
	MW
	Shed load


	StorageInput(s,h)
	MWh
	Charging input for storage units


	StorageLevel(s,h)
	MWh
	Storage level of charge


	Spillage(s,h)
	MWh
	Spillage from water reservoirs


	SystemCostD
	EUR
	Total system cost  for one optimization period


	LostLoadMaxPower(n,h)
	MW
	Deficit in terms of maximum power


	LostLoadRampUp(u,h)
	MW
	Deficit in terms of ramping up for each plant


	LostLoadRampDown(u,h)
	MW
	Deficit in terms of ramping down


	LostLoadMinPower(n,h)
	MW
	Power exceeding the demand


	LostLoadReserve2U(n,h)
	MW
	Deficit in reserve up










Optimisation model

The aim of this model is to represent with a high level of detail the short-term operation of large-scale power systems solving the so-called unit commitment problem. To that aim we consider that the system is managed by a central operator with full information on the technical and economic data of the generation units, the demands in each node, and the transmission network.

The unit commitment problem considered in this report is a simplified instance of the problem faced by the operator in charge of clearing the competitive bids of the participants into a wholesale day-ahead power market. In the present formulation the demand side is an aggregated input for each node, while the transmission network is modelled as a transport problem between the nodes (that is, the problem is network-constrained but the model does not include the calculation of the optimal power flows).

The unit commitment problem consists of two parts: i) scheduling the start-up, operation, and shut down of the available generation units, and ii) allocating (for each period of the simulation horizon of the model) the total power demand among the available generation units in such a way that the overall power system costs is minimized. The first part of the problem, the unit scheduling during several periods of time, requires the use of binary variables in order to represent the start-up and shut down decisions, as well as the consideration of constraints linking the commitment status of the units in different periods. The second part of the problem is the so-called economic dispatch problem, which determines the continuous output of each and every generation unit in the system. Therefore, given all the features of the problem mentioned above, it can be naturally formulated as a mixed-integer linear program (MILP).

Since our goal is to model a large European interconnected power system, we have implemented a so-called tight and compact formulation, in order to simultaneously reduce the region where the solver searches for the solution and increase the speed at which the solver carries out that search. Tightness refers to the distance between the relaxed and integer solutions of the MILP and therefore defines the search space to be explored by the solver, while compactness is related to the amount of data to be processed by the solver and thus determines the speed at which the solver searches for the optimum. Usually tightness is increased by adding new constraints, but that also increases the size of the problem (decreases compactness), so both goals contradict each other and a trade-off must be found.


Objective function

The goal of the unit commitment problem is to minimize the total power system costs (expressed in EUR in equation ), which are defined as the sum of different cost items, namely: start-up and shut-down, fixed, variable, ramping, transmission-related and load shedding (voluntary and involuntary) costs.


\[\begin{split}\begin{split}
& min \sum _{u,n,i} \\
& \Big[ CostStartUp_{u,i} + CostShutDown_{u,i} + CostFixed_{u} \cdot Committed_{u,i}  \\
& + CostVariable_{u,i} \cdot Power_{u,i} + CostRampUp_{u,i} + CostRampDown_{u,i}   \\
& + PriceTransimission_{i,l} \cdot Flow_{i,l} + \left( CostLoadShedding_{i,n} \cdot ShedLoad_{i,n} \right)  \\
& + \sum _{chp} CostHeatSlack_{chp,i} \cdot  HeatSlack_{chp,i}) \\
& + \sum _{chp} CostVariable_{chp,i} \cdot CHPPowerLossFactor_{chp} \cdot Heat_{chp,i}) \\
& + VOLL_{Power} \cdot \left( LostLoadMaxPower_{i,n} + LostLoadMinPower_{i,n} \right) \\
& + VOLL_{Reserve} \cdot \left( LostLoadReserve2U_{i,n} + LostLoadReserve2D_{i,n} \right) \\
& + VOLL_{Ramp} \cdot \left( LostLoadRampUp_{u,i} + LostLoadRampDown_{u,i} \right) \Big]
\end{split}\end{split}\]

The costs can be broken down as:


	Fixed costs: depending on whether the unit is on or off.

	Variable costs: stemming from the power output of the units.

	Start-up costs: due to the start-up of a unit.

	Shut-down costs: due to the shut-down of a unit.

	Ramp-up: emerging from the ramping up of a unit.

	Ramp-down: emerging from the ramping down of a unit.

	Load shed: due to necessary load shedding.

	Transmission: depending of the flow transmitted through the lines.

	Loss of load: power exceeding the demand or not matching it, ramping and reserve.



The variable production costs (in EUR/MWh), are determined by fuel and emission prices corrected by the efficiency (which is considered to be constant for all levels of output in this version of the model) and the emission rate of the unit (equation ):


\[\mathit{CostVariable}_{u,h}=\]\[\mathit{Markup}_{u,h} + \sum _{n,f}\left(\frac{\mathit{Fuel}_{u,f} \cdot \mathit{FuelPrice}_{n,f,h} \cdot \mathit{Location}_{u,n}}{\mathit{Efficiency}_u}\right)\]\[ + \sum _p\left(\mathit{EmissionRate}_{u,p} \cdot \mathit{PermitPrice}_p\right)\]

The variable cost includes an additional mark-up parameter that can be used for calibration and validation purposes.

The start-up and shut-down costs are positive variables, active when the commitment status between two consecutive time periods is modified:


\[i=1:\]\[\mathit{CostStartUp}_{u,i} \geq \mathit{CostStartUp}_u \cdot \left(\mathit{Committed}_{u,i}-\mathit{CommittedInitial}_u\right)\]\[\mathit{CostShutDown}_{u,i} \geq \mathit{CostShutDown}_u \cdot (\mathit{CommittedInitial}_u-\mathit{Committed}_{u,i})\]\[\begin{split}i>1:\end{split}\]\[\mathit{CostStartUp}_{u,i} \geq \mathit{CostStartUp}_u \cdot \left(\mathit{Committed}_{u,i}-\mathit{Committed}_{u,i-1}\right)\]\[\mathit{CostShutDown}_{u,i} \geq \mathit{CostShutDown}_u \cdot (\mathit{Committed}_{u,i-1}-\mathit{Committed}_{u,i})\]

In the previous equation, as in some of the following, a distinction is made between the equation for the first and subsequent periods. The equation for the first period takes into account the commitment status of the unit before the beginning of the simulation, which is part of the information fed into the model.

Ramping costs are computed in the same manner:


\[i=1:\]\[\mathit{CostRampUp}_{u,i} \geq \mathit{CostRampUp}_u \cdot \left(\mathit{Power}_{u,i}-\mathit{PowerInitial}_u\right)\]\[\mathit{CostRampDown}_{u,i} \geq \mathit{CostRampDown}_u \cdot (\mathit{PowerInitial}_u-\mathit{Power}_{u,i})\]\[\begin{split}i>1:\end{split}\]\[\mathit{CostRampUp}_{u,i} \geq \mathit{CostRampUp}_u \cdot \left(\mathit{Power}_{u,i}-\mathit{Power}_{u,i-1}\right)\]\[\mathit{CostRampDown}_{u,i} \geq \mathit{CostRampDown}_u \cdot (\mathit{Power}_{u,i-1}-\mathit{Power}_{u,i})\]

It should be noted that in case of start-up and shut-down, the ramping costs are added to the objective function. Using start-up, shut-down and ramping costs at the same time should therefore be performed with care.

In the current formulation all other costs (fixed and variable costs, transmission costs, load shedding costs) are considered as exogenous parameters.

As regards load shedding, the model considers the possibility of voluntary load shedding resulting from contractual arrangements between generators and consumers. Additionally, in order to facilitate tracking and debugging of errors, the model also considers some variables representing the capacity the system is not able to provide when the minimum/maximum power, reserve, or ramping constraints are reached. These lost loads are a very expensive last resort of the system used when there is no other choice available. The different lost loads are assigned very high values (with respect to any other costs). This allows running the simulation without infeasibilities, thus helping to detect the origin of the loss of load. In a normal run of the model, without errors, all these variables are expected to be equal to zero.




Demand-related constraints

The main constraint to be met is the supply-demand balance, for each period and each zone, in the day-ahead market (equation ). According to this restriction, the sum of all the power produced by all the units present in the node (including the power generated by the storage units), the power injected from neighbouring nodes, and the curtailed power from intermittent sources is equal to the load in that node, plus the power consumed for energy storage, minus the load interrupted and the load shed.


\[\sum _u\left(\mathit{Power}_{u,i} \cdot \mathit{Location}_{u,n}\right)\]\[ + \sum _l\left(\mathit{Flow}_{l,i} \cdot \mathit{LineNode}_{l,n}\right)\]\[=\mathit{Demand}_{\mathit{DA},n,h} + \sum _r\left(\mathit{StorageInput}_{s,h} \cdot \mathit{Location}_{s,n}\right)\]\[ -\mathit{ShedLoad}_{n,i}\]\[ - \mathit{LostLoadMaxPower}_{n,i} + \mathit{LostLoadMinPower}_{n,i}\]

Besides that balance, the reserve requirements (upwards and downwards) in each node must be met as well. In Dispa-SET, the reserve requirements are defined as an aggregation of secondary and tertiary reserves, which are typically brought online in periods shorter than an hour, the time step of this model. Therefore, additional equations and constraints are defined to account for the up/down ramping requirements, by computing the ability of each unit to adapt its power output within a period of 15 min.

For each power plant, the ability to increase its power (in MW/h) is the ramp-up capability if it is already committed or the nominal power if it is stopped and its starting time is lower than 15 minutes. This is to take into account that fast starting units could provide reserve (hydro units for secondary reserve, gas turbine for tertiary reserve).


\[\mathit{MaxRamp}2U_{u,i}\]\[\leq \mathit{RampUpMaximum}_u  \cdot  \mathit{Committed}_{u,i}\]\[+ \mathit{FlexibilityUp}_u  \cdot  \left(1-\mathit{Committed}_{u,i} \right)\]

where FlexibilityUp is the maximum flexibility (in MW/h) that can be provided by the unit in 15 min in case of cold start:


\[If ~ \mathit{RampStartUpMaximum}_u \geq \mathit{PowerMinStable}_u  \cdot  4\]\[Then ~ \mathit{FlexibilityUp}_u = \mathit{RampStartUpMaximum}_u\]\[Else ~ \mathit{FlexibilityUp}_u = 0\]

where the factor 4 is used to convert the ramping rate from MW/15min to MW/h.

The maximum ramping rate is also limited by the available capacity margin between current and maximum power output:


\[\mathit{MaxRamp2U}_{u,i} \leq (\mathit{PowerCapacit}y_u \cdot \mathit{AvailabilityFactor}_{u,i}\]\[ \cdot  (1-\mathit{OutageFactor}_{u,i})-\mathit{Power}_{u,i}) \cdot 4\]

The same applies to the 15 min ramping down capabilities:


\[\mathit{MaxRamp}2D_{u,i}\]\[ \leq \mathit{max}\left(\mathit{RampDownMaximu}m_u,\mathit{Flexibility}\mathit{Down}_u\right) \cdot \mathit{Committed}_{u,i}\]

The parameter FlexibilityDown is defined as the maximum ramp down rate at which the unit can shut down in 15 minutes. In case the unit cannot be shut-down in 15 minutes (and only in this case) the maximum ramping down capability is limited by the capacity margin between actual and minimum power:


\[\begin{split} If \mathit{RampShutDownMaximu}m_u<\mathit{PowerMinStabl}e_u \cdot 4 :\end{split}\]\[ \mathit{MaxRamp}2D_{u,i} \leq \left(\mathit{Power}_{u,i}-\mathit{PowerMinStable}_u \cdot \mathit{Committed}_{u,i}\right) \cdot 4\]\[ Else :\]\[\mathit{MaxRamp}2D_{u,i} \leq \mathit{Power}_{u,i} \cdot 4\]

The reserve requirements are defined by the users. In case no input is provided a default formula is used to evaluate the needs for secondary reserves as a function of the maximum expected load for each day. The default formula is described by:


\[\mathit{Demand}_{2U,n,i}=\sqrt{10 \cdot \underset h{\mathit{max}}\left(\mathit{Demand}_{\mathit{DA},n,h}\right) + 150^2}-150\]

Downward reserves are defined as 50% of the upward margin:


\[\mathit{Demand}_{2D,n,h}=0.5 \cdot \mathit{Demand}_{2U,n,h}\]

The reserve demand should be fulfilled at all times by all the plants allowed to participate in the reserve market:


\[\mathit{Demand}_{2U,n,h}\]\[ \leq \sum _{u,t}\left(\mathit{MaxRamp}2U_{u,i} \cdot \mathit{Technology}_{u,t} \cdot \mathit{Reserv}e_t \cdot \mathit{Locatio}n_{u,n}\right)\]\[+ \mathit{LostLoadReserve2UH}_{n,i}\]

The same equation applies to downward reserve requirements (2D).




Power output bounds

The minimum power output is determined by the must-run or stable generation level of the unit if it is committed:


\[\mathit{Power}\mathit{MustRun}_{u,i} \cdot \mathit{Committed}_{u,i}\]\[ \leq \mathit{Power}_{u,i}\]

On the other hand, the output is limited by the available capacity, if the unit is committed:


\[\mathit{Power}_{u,i}\]\[ \leq \mathit{PowerCapacity}_u \cdot \mathit{AvailabilityFactor}_{u,i}\]\[ \cdot (1-\mathit{OutageFactor}_{u,i}) \cdot \mathit{Committed}_{u,i}\]

The availability factor is used for renewable technologies to set the maximum time-dependent generation level. It is set to one for the traditional power plants. The outage factor accounts for the share of unavailable power due to planned or unplanned outages.

The power output in a given period also depends on the output levels in the previous and the following periods and on the ramping capabilities of the unit. If the unit was down, the ramping capability is given by the maximum start up ramp, while if the unit was online the limit is defined by the maximum ramp up rate. Those bounds are given with respect to the previous time step by the equation :


\[i=1:\]\[\mathit{Power}_{u,i} \leq\]\[\mathit{PowerInitial}_u\]\[ + \mathit{CommittedInitial}_u \cdot \mathit{RampUpMaximum}_u\]\[ + \left(1-\mathit{CommittedInitial}_u\right) \cdot \mathit{RampStartUpMaximum}_u\]\[ + \mathit{LostLoadRampUp}_{u,i}\]\[\begin{split}i>1:\end{split}\]\[\mathit{Power}_{u,i} \leq\]\[\mathit{Power}_{u,i-1}\]\[ + \mathit{Committed}_{u,i-1} \cdot \mathit{RampUpMaximum}_u\]\[ + \left(1-\mathit{Committed}_{u,i-1}\right) \cdot \mathit{RampStartUpMaximum}_u\]\[ + \mathit{LostLoadRampUp}_{u,i}\]

Where the LoadMaximum parameter is calculated taking into account the availability factor and the outage factor:


\[\mathit{LoadMaximum}_{u,h}=\mathit{AvailabilityFactor}_{u,h} \cdot (1-\mathit{OutageFactor}_{u,h})\]

Similarly, the ramp down capability is limited by the maximum ramp down or the maximum shut down ramp rate:


\[i=1:\]\[\mathit{PowerInitial}_u-\mathit{Power}_{u,i} \leq\]\[\mathit{Committed}_{u,i} \cdot \mathit{RampDownMaximum}_u\]\[ + \left(1-\mathit{Committed}_{u,i}\right) \cdot \mathit{RampShutDownMaximum}_u\]\[ + \mathit{LostLoadRampDown}_{u,i}\]\[\begin{split}i>1:\end{split}\]\[\mathit{Power}_{u,i-1}-\mathit{Power}_{u,i} \leq\]\[\mathit{Committed}_{u,i} \cdot \mathit{RampDownMaximum}_u\]\[ + \left(1-\mathit{Committed}_{u,i}\right) \cdot \mathit{RampShutDownMaximum}_u\]\[ + \mathit{LostLoadRampDown}_{u,i}\]




Minimum up and down times

The operation of the generation units is also limited as well by the amount of time the unit has been running or stopped. In order to avoid excessive ageing of the generators, or because of their physical characteristics, once a unit is started up, it cannot be shut down immediately. Reciprocally, if the unit is shut down it may not be started immediately.

That is, the value of the time counter with respect to the minimum up time and down times determines the commitment status of the unit. In order to model theses constraints linearly, it is necessary to keep track of the number of hours the unit must be online at the beginning of the simulation:


\[\mathit{TimeUpLeftInitial}_u =\]\[\mathit{min}\left\{N,\left(\mathit{TimeUpMinimum}_u - \mathit{TimeUpInitial}_u\right) \cdot \mathit{CommittedInitial}_u\right\}\]

where N is the number of time steps in the current optimisation horizon.

If the unit is initially started up, it has to remain committed until reaching the minimum up time:


\[\sum _{i=1}^{\mathit{TimeUpLeftInitial}_u}\left(1-\mathit{Committed}_{u,i}\right)=0\]

If the unit is started during the considered horizon, the time it has to remain online is TimeUpMinimum, but cannot exceed the time remaining in the simulated period. This is expressed in equation  and is pre-calculated for each time step of the period.


\[\mathit{TimeUpLeftJustStarted}_{u,i}=\]\[\mathit{min}\left\{N -i + 1,\mathit{TimeUpMinimum}_u\right\}\]

The equation imposing the unit to remain committed is written:


\[ i=1:\]\[ \sum _{\mathit{ii}=i}^{i + \mathit{TimeUpLeftJustStarted}_{u,i}-1}\mathit{Committed}_{u,\mathit{ii}} \geq\]\[ \mathit{TimeUpLeftJustStarted}_{u,i} \cdot \left(\mathit{Committed}_{u,i}-\mathit{CommittedInitial}_u\right)\]\[\begin{split} i>1:\end{split}\]\[ \sum _{\mathit{ii}=i}^{i + \mathit{TimeUpLeftJustStarted}_u-1}\mathit{Committed}_{u,\mathit{ii}} \geq\]\[\mathit{TimeUpLeftJustStarted}_{u,i} \cdot \left(\mathit{Committed}_{u,i}-\mathit{Committed}_{u,i-1}\right)\]

The same method can be applied to the minimum down time constraint:


\[\mathit{TimeDownLeft}_u =\]\[\mathit{min}\{N,(\mathit{TimeDownMinimum}_u-\mathit{TimeDownInitial}_u)\]\[\cdot (1-\mathit{CommittedInitial}_u)\}\]

Related to the initial status of the unit:


\[\sum _{i=1}^{\mathit{TimeDownLeft}_u}\mathit{Committed}_{u,i}=0\]

The TimeDownLeftJustStopped parameter is computed by:


\[\mathit{TimeDownLeftJustStopped}_{u,i} =\]\[\mathit{min}\left\{N - i + 1,\mathit{TimeDownMinimum}_u\right\}\]

Finally, the equation imposing the time the unit has to remain de-committed is defined as:


\[i=1:\]\[\sum _{\mathit{ii}=i}^{i + \mathit{TimeDownLeftJustStopped}_{i,u}-1}\left(1-\mathit{Committed}_{u,i}\right) \geq\]\[\mathit{TimeDownLeftJustStopped}_{u,i} \cdot \left(\mathit{CommittedInitial}_u-\mathit{Committed}_{u,i}\right)\]\[\begin{split}i>1:\end{split}\]\[\sum _{\mathit{ii}=i}^{i + \mathit{TimeDownLeftJustStopped}_u-1}\left(1-\mathit{Committed}_{u,i}\right) \geq\]\[\mathit{TimeDownLeftJustStopped}_{u,i} \cdot \left(\mathit{Committed}_{u,i-1}-\mathit{Committed}_{u,i}\right)\]

This formulation avoids the use of additional binary variables to describe the start-up and shut-down of each unit.




Storage-related constraints

Generation units with energy storage capabilities (mostly large hydro reservoirs and pumped hydro storage units) must meet additional restrictions related to the amount of energy stored. Storage units are considered to be subject to the same constraints as non-storage power plants. In addition to those constraints, storage-specific restrictions are added for the set of storage units (i.e. a subset of all units). These restrictions include the storage capacity, inflow, outflow, charging, charging capacity, charge/discharge efficiencies, etc. Discharging is considered as the standard operation mode and is therefore linked to the Power variable, common to all units.

The first constrain imposes that the energy stored by a given unit is bounded by a minimum value:


\[\mathit{StorageMinimum}_s \leq \mathit{StorageLevel}_{s,i}\]

In the case of a storage unit, the availability factor applies to the charging/discharging power, but also to the storage capacity. The storage level is thus limited by:


\[\mathit{StorageLevel}_{s,i} \leq \mathit{StorageCapacity}_s \cdot \mathit{AvailabilityFactor}_{s,i}\]

The energy added to the storage unit is limited by the charging capacity. Charging is allowed only if the unit is not producing (discharging) at the same time (i.e. if Committed, corresponding to the {textquotedbl}normal{textquotedbl} mode, is equal to 0).


\[\mathit{StorageInput}_{s,i} \leq \mathit{StorageChargingCapacity}_s\]\[\cdot \mathit{AvailabilityFactor}_{s,i} \cdot (1-\mathit{Committed}_{s,i})\]

Discharge is limited by the level of charge of the storage unit:


\[\frac{\mathit{Power}_{i,s}}{\mathit{StorageDischargeEfficienc}y_s} + \mathit{StorageOutflow}_{s,i}\]\[+ \mathit{Spillage}_{s,i} -\mathit{StorageInflow}_{s,i}\]\[\leq \mathit{StorageLevel}_{s,i}\]

Charge is limited by the level of charge of the storage unit:


\[\mathit{StorageInput}_{s,i} \cdot \mathit{StorageChargingEfficienc}y_s\]\[- \mathit{StorageOutflow}_{s,i} -  \mathit{Spillage}_{s,i}\]\[+ \mathit{StorageInflow}_{s,i}\]\[\leq \mathit{StorageCapacity}_s-\mathit{StorageLevel}_{s,i}\]

Besides, the energy stored in a given period is given by the energy stored in the previous period, net of charges and discharges:


\[i=1:\]\[\mathit{StorageLevelInitial}_s + \mathit{StorageInflow}_{s,i}\]\[+ \mathit{StorageInput}_{s,i} \cdot \mathit{StorageChargingEfficiency}_s\]\[= \mathit{StorageLevel}_{s,i} + \mathit{StorageOutflow}_{s,i} + \frac{\mathit{Power}_{s,i}}{\mathit{StorageDischargeEfficienc}y_s}\]\[\begin{split}i>1:\end{split}\]\[\mathit{StorageLevel}_{s,i-1} + \mathit{StorageInflow}_{s,i}\]\[+ \mathit{StorageInput}_{s,i} \cdot \mathit{StorageChargingEfficiency}_s\]\[= \mathit{StorageLevel}_{s,i} + \mathit{StorageOutflow}_{s,i} + \frac{\mathit{Power}_{s,i}}{\mathit{StorageDischargeEfficienc}y_s}\]

Some storage units are equiped with large reservoirs, whose capacity at full load might be longer than the optimisation horizon. Therefore, a minimum level constraint is required for the last hour of the optimisation, which otherwise wouls systematically tend to empty the reservoir as much a possible. An exogenous minimum profile is thus provided and the following constraint is applied:


\[\mathit{StorageLevel}_{s,N} \geq min( \mathit{StorageProfile}_{s,N}\]\[\cdot \mathit{AvailabilityFactor}_{s,N} \cdot \mathit{StorageCapacity}_{s},\]\[\mathit{StorageLevel}_{s,0} + \sum\limits_{i=1}^N InFlows_{s,i} )\]

where StorageProfile is a non-dimensional minimum storage level provided as an exogenous input. The minimum is taken to avoid unfeasibilities in case the provided inflows are not sufficient to comply with the imposed storage level at the end of the horizon.




Heat production constraints (CHP plants only)

In DispaSET Power plants can be indicated as CHP satisfying one heat demand.  Heat Demand can be covered either by a CHP plant or by alternative heat supply options (Heat Slack).

[image: _images/CHP_flows.png]
The following two heat balance constraints are used for any CHP plant type.


\[Heat(chp,i) + HeatSlack(chp,i)
= HeatDemand(chp,i)\]


\[StorageInput_{chp,i} \leq CHPMaxHeat_{chp}\]

The constraints between heat and power production differ for each plant design and explained within the following subsections.


Steam plants with Backpressure turbine

This options includes steam-turbine based power plants with a backpressure turbine. The feasible operating region is between AB. The slope of the line is the heat to power ratio.


[image: _images/backpressure.png]



\[Power_{chp,i}
=
StorageInput_{chp,i} \cdot CHPPowerToHeat_{chp}\]




Steam plants with Extraction/condensing turbine

This options includes steam-turbine based power plants with an extraction/condensing turbine. The feasible operating region is within ABCDE.
The vertical dotted line BC corresponds to the minimum condensation line (as defined by CHPMaxHeat). The slope of the DC line is the heat to power ratio and the slope of the AB line is the inverse of the power penalty ratio.


[image: _images/extraction.png]



\[Power_{chp,i}
\geq
StorageInput_{chp,i} \cdot CHPPowerToHeat_{chp}\]


\[Power_{chp,i}
\leq
PowerCapacity_{chp} -\]\[StorageInput_{chp,i} \cdot CHPPowerLossFactor_{chp}\]




Power plant coupled with any power to heat option

This option includes power plants coupled with resistance heater or heat pumps. The feasible operating line is between AB. The slope of the line is the inverse of the COP or efficiency.
The vertical dotted line corresponds to the heat pump (or resistance heater) thermal capacity (as defined by CHPMaxHeat)


[image: _images/p2h.png]



\[Power_{chp,i}
=
PowerCapacity_{chp} - StorageInput_{chp,i} \cdot CHPPowerLossFactor_{chp}\]




Heat Storage

Heat storage is modeled in a similar way as electric storage as follows:

Heat Storage balance:


\[i=1:\]\[ StorageInitial_{chp}
 +StorageInput_{chp,i}
 =\]\[ StorageLevel_{chp,i}
 +Heat_{chp,i} + StorageSelfDischarge_{chp} \cdot StorageLevel_{chp,i}/24\]\[\begin{split}i>1:\end{split}\]\[+StorageLevel_{chp,i-1}
+StorageInput_{chp,i}
=\]\[StorageLevel_{chp,i}
+Heat_{chp,i} + StorageSelfDischarge_{chp} \cdot StorageLevel_{chp,i}/24\]

Storage level must be above a minimum and below storage capacity:


\[StorageMinimum_{chp}
\leq
StorageLevel_{chp,i}
\leq
StorageCapacity_{chp}\]






Emission limits

The operating schedule also needs to take into account any cap on the emissions (not only CO2) from the generation units existing in each node:


\[\sum _u\left(\mathit{Power}_{u,i} \cdot \mathit{EmisionRate}_{u,p} \cdot \mathit{Location}_{u,n}\right)\]\[\leq \mathit{EmisionMaximum}_{n,p}\]

It is important to note that the emission cap is applied to each optimisation horizon: if a rolling horizon of one day is adopted for the simulation, the cap will be applied to all days instead of the whole year.




Network-related constraints

The flow of power between nodes is limited by the capacities of the transmission lines:


\[\mathit{FlowMinimum}_{l,i} \leq \mathit{Flow}_{l,i}\]\[\mathit{Flow}_{l,i} \leq \mathit{FlowMaximum}_{l,i}\]

In this model a simple Net Transfer Capacity (NTC) between countries approach is followed. No DC power flow or Locational Marginal Pricing (LMP) model is implemented.




Curtailment

If curtailment of intermittent generation sources is allowed in one node, the amount of curtailed power is bounded by the output of the renewable (tr) units present in that node:


\[\mathit{CurtailedPower}_{n,i}\]\[\leq \sum _{u,\mathit{tr}}\left(\mathit{Power}_{u,i} \cdot \mathit{Technology}_{u,\mathit{tr}} \cdot \mathit{Location}_{u,n}\right) \cdot \mathit{Curtailment}_n\]




Load shedding

If load shedding is allowed in a node, the amount of shed load is limited by the shedding capacity contracted on that particular node (e.g. through interruptible industrial contracts)


\[\mathit{ShedLoad}_{n,i} \leq \mathit{LoadShedding}_n\]






Rolling Horizon

The mathematical problem described in the previous sections could in principle be solved for a whole year split into time steps of one hour, but with all likelihood the problem would become extremely demanding in computational terms when attempting to solve the model with a realistically sized dataset. Therefore, the problem is split into smaller optimization problems that are run recursively throughout the year.

The following figure shows an example of such approach, in which the optimization horizon is one day, with a look-ahead (or overlap) period of one day. The initial values of the optimization for day j are the final values of the optimization of the previous day. The look-ahead period is modelled to avoid issues related to the end of the optimization period such as emptying the hydro reservoirs, or starting low-cost but non-flexible power plants. In this case, the optimization is performed over 48 hours, but only the first 24 hours are conserved.

[image: _images/rolling_horizon.png]
Although the previous example corresponds to an optimization horizon and an overlap of one day, these two values can be adjusted by the user in the Dispa-SET configuration file. As a rule of thumb, the optimization horizon plus the overlap period should as least twice the maximum duration of the time-dependent constraints (e.g. the minimum up and down times). In terms of computational efficiency, small power systems can be simulated with longer optimization horizons, while larger systems should reduce this horizon, the minimum being one day.




Power plant clustering

For computational efficiency reasons, it is useful to cluster some of the original units into larger units. This reduces the number of continuous and binary variables and can, in some conditions, be performed without significant loss of simulation accuracy.

The clustering occurs at the beginning of the pre-processing phase (i.e. the units in the Dispa-SET database do not need to be clustered).

In Dispa-SET, different clustering options are availble and can be automatically generated from the same input data. They are described in the two next sections.


MILP clustering

In this formulation, the units that are either very small or very flexible are aggregated into larger units. Some of these units (e.g. the turbojets) indeed present a low capacity or a high flexibility: their output power does not exceed a few MW and/or they can reach full power in less than 15 minutes (i.e. less than the simulation time step). For these units, a unit commitment model with a time step of 1 hour is unnecessary and computationally inefficient. They are therefore merged into one single, highly flexible unit with averaged characteristics.

The condition for the clustering of two units is a combination of subconditions regarding their type, maximum power, flexiblity and technical similarities. They are summarized in the figure below (NB: the thresholds are for indicative purpose only, they can be user-defined).

[image: _images/clustering.png]
When two units are clustered, the minimum and maximum capacities of new aggregated units (indicated by the star) are given by:


\[P_{min}^* = min(P_{j,min})\]


\[P_{max}^* = \sum_j (P_{j,min})\]

The last equation is also applied for the storage capacity or for the storage charging power.

The unit marginal (or variable cost) is given by:


\[Cost_{Variable}^* = \frac{\sum_j ( P_{j,max} \cdot Cost_{Variable,j} )}{P_{max}^*}\]

The start-up/shut-down costs are transformed into ramping costs (example with ramp-up):


\[Cost_{RampUp}^* = \frac{\sum_j ( P_{j,max} \cdot Cost_{RampUp,j} )}{P_{max}^*} + \frac{\sum_j ( Cost_{StartUp,j} )}{P_{max}^*}\]

Other characteristics, such as the plant efficiency, the minimum up/down times or the CO2 emissions are computed as a weighted averaged:


\[Efficiency^* = \frac{\sum_j ( P_{j,max} \cdot Efficiency_{j} )}{P_{max}^*}\]

It should be noted that only very similar units are aggregated (i.e. their quantitative characteristics should be similar), which avoids errors due to excessive aggregation.




LP clustering

Dispa-SET provides the possibility to generate the optimisation model as an LP problem (i.e. withtout the binary variables). In that case, the following constraints are removed since they can only be expressed in an MILP formulation:


	Minimum up and down times

	Start-up costs

	Minimum stable load



Since the start-up of individual units is not considered anymore, it is not useful to disaggrate them in the optimisation. All units of a similar technology, fuel and zone can be aggregated into a single unit using the equations proposed in the previous section.
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Implementation and interface

The typical step-by-step procedure to parametrize and run a DispaSET simulation is the following:


	Fill the Dispa-SET database with properly formatted data (time series, power plant data, etc.)

	Configure the simulation parameters (rolling horizon, data slicing) in the configuration file.

	Generate the simulation environment which comprises the inputs of the optimisation

	Open the GAMS simulation files (project: UCM.gpr and model: UCM_h.gms) and run the model.

	Read and display the simulation results.



This section provides a detailed description of these steps and the corresponding data entities.


Resolution Flow Chart

The whole resolution process for a dispa-SET run is defined from the processing and formatting of the raw data to the generation of aggregated result plots and statistics. A flow chart of the consecutive data entities and processing steps is provided hereunder.

[image: _images/Flow-chart.png]
Each box in the flow chart corresponds to one data entity. The links between these data entities correspond to script written in Python or in GAMS. The different steps perform various tasks, which can be summarized by:


	
	Data collection:

	
	Read csv sheets, assemble data

	Convert to the right format (timestep, units, etc).

	Define proper time index (duplicates not allowed)

	Connect to database

	Check if data present & write data

	Write metadata









	
	Pre-processing:

	
	Read the config file

	Slice the data to the required time range

	Deal with missing data

	Check data for consistency (min up/down times, startup times, etc.)

	Calculate variable cost for each unit

	Cluster units

	Define scenario according to user inputs (curtailment, participation to reserve, amount of VRE, amount of storage, …)

	Define initial state (basic merit-order dispatch)

	Write the simulation environment to a user-defined folder









	
	Simulation environment and interoperability:

	
	
	Self-consistent folder with all required files to run the simulation:

	
	Excel files

	GDX file

	Input files in pickle format

	Gams model files









	Python scripts to translate the data between one format to the other.



	Possibility to modify the inputs manually and re-generate a GDX file from the excel files











	
	Simulation:

	
	The GAMS simulation file is run from the simulation environment folder

	Alternatively the model is run with the PYOMO solver

	All results and inputs are saved within the simulation environment









	
	Post-processing:

	
	Reads the simulation results saved in the simulation environment

	Aggregates the power generation and storage curves

	Computates of yearly statistics

	Generates plots














Dispa-SET database

Although two versions of the database are available (mysql and csv), the public version of Dispa-SET only comes with the latter. The Dispa-SET input data is stored as csv file in directory structure. A link to the required data is then provided by the user in the configuration file.

[image: _images/database.png]
The above figure shows a partially unfolded view of the database structure. In that example, data is provided for the day-ahead net transfer capacities for all lines in the EU, for the year 2015 and with a 1h time resolution. Time series are also provided for the day-ahead load forecast for Belgium in 2015 with 1h time resolution.




Configuration File

The excel config file is read at the beginning of the pre-processing phase. It provides general inputs for the simulation as well as links to the relevant data files in the database.

[image: _images/config.gif]



Simulation environment

This section describes the different simulation files, templates and scripts required to run the DispaSET model. For each simulation, these files are included into a single directory corresponding to a self-sufficient simulation environment.

A more comprehensive description of the files included in the simulation environment directory is provided hereunder.


UCM_h.gms and UCM.gpr

UCM_h.gms is the main GAMS model described in Chapter 1. A copy of this file is included in each simulation environment, allowing keeping track of the exact version of the model used for the simulation. The model must be run in GAMS and requires a proper input file (Inputs.gdx).








	Requires:
	Inputs.gdx
	Input file for the simulation.


	Generates:
	Results.gdx
	Simulation results in gdx format


	.
	Results.xlsx
	Simulation results in xlsx format.





UCM.gpr is the GAMS project file which should be opened before UCM_h.gms.




make_gdx.gms

GAMS file that reads the different template excel files and generates the Inputs.gdx file. This file should be opened in GAMS.








	Requires:
	InputDispa-SET – xxx.xlsx
	DispaSET template files


	Generates:
	Inputs.gdx
	Input file for the simulation








makeGDX.bat

Batch script that generates the input file from the template without requiring opening GAMS. The first time it is executed, the path of the GAMS folder must be provided.








	Requires:
	InputDispa-SET – xxx.xlsx
	DispaSET template files


	.
	make_gdx.gms
	GAMS file to generate Inputs.gdx


	Generates:
	Inputs.gdx
	Input file for the simulation








writeresults.gms

GAMS file to generate the excel Results.xlsx file from the Results.gdx generated by GAMS (in case the write_excel function was deactivated in GAMS.








	Requires:
	Results.gdx
	Simulation results in gdx format


	Generates:
	Results.xlsx
	Simulation results in xlsx format








Inputs.gdx

All the inputs of the model must be stored in the Inputs.gdx file since it is the only file read by the main GAMS model. This file is generated from the DispaSET template.








	Requires:
	InputDispa-SET – xxx.xlsx
	DispaSET template files


	Generates:
	
	








InputDispa-SET -  [ParameterName].xlsx

Series of 42 excel files, each corresponding to a parameter of the DispaSET model (see Chapter 1). The files must be formatted according to section 2.2.




InputDispa-SET -  Sets.xlsx

Single excel file that contains all the sets used in the model in a column format.




InputDispa-SET -  Config.xlsx

Single excel file that contains simulation metadata in the form of a Table. This metadata allows setting the rolling horizon parameter and slicing the input data to simulate a subset only.
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Input Data

In this section, “Input Data” refers to the data stored in the Dispa-SET database. The format of this data is pre-defined and imposed, in such a way that it can be read by the pre-processing tool.

Two important preliminary comments should be formulated:


	All the time series should be registered with their timestamps (e.g. ‘2013-02-20 02:00:00’) relative to the UTC timezone.

	Although the optimisation model is designed to run with any technology or fuel name, the pre-processing and the post-processing tools of Dispa-SET use some hard-coded values. The Dispa-SET database should also comply with this convention (described in the next sections). Any non-recognized technology or fuel will be discarded in the pre-processing.




Technologies

The Dispa-SET input distinguishes between the technologies defined in the table below. The VRES column indicates the variable renewable technologies (set “tr” in the optimisation) and the Storage column indicates the technologies which can accumulate energy.
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Developers’ section


Folders organization


	GAMS code and scripts are included within the “GAMS-files” folder. The code should only be modified in that folder!

	Python code and scripts are included within the “DispaSET” folder.

	DispaSET configuration files are included within the “ConfigFiles” folder (one file per simulation).

	Input files for each country are stored in the “Database” folder

	Simulation directories can be written into the “Simulations” folder, which is not tracked by git



A sample Simulation Environment Folder is available at SimulationReferenceTestCase. The files in this folders are generated automatically by the pre-processing scripts. They should not be modified. The folder should be replaced and updated at every major Dispa-SET release.

By default, the pre-processing scripts are set to generate the simulation environment within the “Simulations” folder. This folder is excluded in .gitignore and can therefore be used for testing purposes.




Math equations in the Docs


	To use online mathjax (default), there is nothing to do but displaying the equation requires an internet connection. In linux, the Makefile call to build with mathjax is written:

$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html

In conf.py, the only math equation should be: 'sphinx.ext.mathjax'







	To use pngmath (for Linux):

sudo apt-get install dvipng

In conf.py, add 'sphinx.ext.pngmath' in the extensions

in Makefile: $(SPHINXBUILD) -D pngmath_latex=latex -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html







	To use mathjax in offline mode, download the latest release from the mathjax github, copy it to Docs/_static/, and include it in the conf.py:

mathjax_path = "Mathjax/MathJax.js"












Using Autodoc

The “API” section of the Docs uses uses the sphinx autodoc extension to scan the source code of Dispa-SET and display the relevant functions together with their description, parameters and outputs.
In the Sphinx “conf.py”, the path to the source file must be added:

sys.path.insert(0, os.path.abspath('../DispaSET'))





If the API documentation is generated with sphinx-apidoc, from the Docs folder, use:

sphinx-apidoc -o . ../DispaSET/





Add a link to “DispaSET” in the table of content of index.rst and include the root folder in conf.py:

sys.path.insert(0, os.path.abspath('../'))








Clone git repository to svn


	Install git svn

sudo apt-get install git-svn







	Create svn branch

git branch svn







	Connect to svn repository

git svn init -s --prefix=svn/ --username <user> https://joinup.ec.europa.eu/svn/dispaset







	Checkout svn banch

git checkout svn







	Fetch remote content

git svn fetch







	Reset repository

git reset --hard remotes/svn/trunk







	Merge master into svn

git merge master







	Commit to the remote repository

git svn dcommit









The folder can finally optionally be deleted to avoid any confusion.




Issue with the compilation of the GAMS API

First, check that the installed version of GAMS is the 64 bit. 32 bit versions tend to generated compatibility issues.

When the pre-compiled libraries do not work, they must be re-compiled from the GAMS apifile folder. In Windows, this generally raises the issue of the missing vcvarsall.bat file. If the issue persists after installing the Microsoft C++ compiler for Python 2.7, try the following:


	Enter MSVC for Python command prompt

	SET DISTUTILS_USE_SDK=1

	SET MSSdk=1

	python.exe gdxsetup.py install






Public version of Dispa-SET

Because some input files are subject to intellectual property and copyrights, some folders available on the private repository cannot by uploaded to the public GitHub repository. The script DispaSync.sh in the root folder has been written to synchronize the subset of publicly available folders and files with an external folder. This folder can then be committed and pushed to the public repository.

By default, all file and folders are synchronized. In order to add a private path (to a file or to a folder), edit the DispaSync.sh file and add an entry to the “–exclude” argument.

The “rsync” software is required for the synchronization and must be installed on the local machine. The script can be run in any UNIX terminal (i.e. it cannot be run in Windows).
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DispaSET package


Subpackages



	DispaSET.misc package
	Submodules

	DispaSET.misc.colorstreamhandler module

	DispaSET.misc.gdx_handler module

	DispaSET.misc.str_handler module

	Module contents





	DispaSET.postprocessing package
	Submodules

	DispaSET.postprocessing.postprocessing module

	Module contents





	DispaSET.preprocessing package
	Submodules

	DispaSET.preprocessing.data_check module

	DispaSET.preprocessing.data_handler module

	DispaSET.preprocessing.preprocessing module

	DispaSET.preprocessing.utils module

	Module contents





	DispaSET.pyomo package
	Submodules

	DispaSET.pyomo.model module

	DispaSET.pyomo.utils module

	Module contents












Submodules




DispaSET.solve module




Module contents
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DispaSET.misc package


Submodules




DispaSET.misc.colorstreamhandler module




DispaSET.misc.gdx_handler module




DispaSET.misc.str_handler module




Module contents
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DispaSET.postprocessing package


Submodules




DispaSET.postprocessing.postprocessing module




Module contents
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DispaSET.preprocessing package


Submodules




DispaSET.preprocessing.data_check module




DispaSET.preprocessing.data_handler module




DispaSET.preprocessing.preprocessing module




DispaSET.preprocessing.utils module




Module contents
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DispaSET.pyomo package


Submodules




DispaSET.pyomo.model module




DispaSET.pyomo.utils module




Module contents
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Releases

Major stable releases:


	Dispa-SET v2.2 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.2.zip]

	Dispa-SET v2.1 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.1.zip]

	Dispa-SET v2.0 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.0.zip]




Changelog


Version 2.2


	Inclusion of CHP, power2heat and thermal storage (these new features can be tested by running the config file for Cyprus: ‘ConfigFiles/ConfigCY.xlsx’)

	Bug fixes

	Improved user interface






Version 2.1


	Major refactoring of the folder structure

	New data included in the database

	Inclusion of the LP formulation (in addition to the MILP)






Version 2.0

First public version of the Dispa-SET model.
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